
presentation

DAD – Distributed Applications Development
Cristian Toma

D.I.C.E/D.E.I.C – Department of Economic Informatics & Cybernetics
www.dice.ase.ro

Lecture 8

S4 - Core Distributed Middleware Programming in JEE

Cristian Toma – Business Card

Agenda for Lecture 8

Java RMI –

Remote Method
Invocation

Java RMI
Distributed

Architecture
DEMO

 Exchange Ideas

Java Remote Method Invocation
DAD Section 4 - JRMI Samples, JRMP network analysis, JRMI Stubs/Skeleton

1. Java RMI Overview Technology

Java RMI – Remote Method Invocation

 RMI Overview
 Java RMI allows the programmers to invoke/call
procedures/methods from a class inside in a remote virtual
machine exactly as it is in the local virtual machine.

Local Machine (Client)

SampleServerInterface

 remoteObject;

int s;

…

s = remoteObject.sum(1,2);

System.out.println(s);

Remote Machine (Server)

public int sum(int a,int b) {

 return a + b;

}

1,2

3

1. Java RMI Architecture

RMI Architecture

RMI Server

skeleton

stub

RMI Client

Registry

1. bind

2.

lookup
4.

return
3. call

Local Machine

Remote Machine

• RMI Server must register its name and
address in the RMI Registry program –
bind

• RMI Client is looking for the address and
the name of the RMI server object in the
RMI Registry program – lookup

• RMI Stub serializes and transmits the
parameters of the call in sequence –
ñmarshalling ò to the RMI Skeleton. RMI
Skeleton de-serializes and extracts the
parameters from the received call –
ñunmarshalling ò. In the end, the RMI
Skeleton calls the method inside the
server object and send back the
response to the RMI Stub through
“marshalling” the return’s parameter.

1. Java RMI Technology

JRMI Skeleton/Stub & Stub Approach

 The client invokes a remote method after obtaining the reference to the server
object through JRMI registry program from the server . The client delegates the
involved method invocation sockets and protocol to the JRMI Stub
class/instance - object .

 JRMI Stub is responsible for calling the method, using the parameter marshaling
technique in order to transfer them to the JRMI Skeleton class/instance - object .
The JRMI Skeleton class/instance - object from the server side sends the
returned response to the JRMI Stub, so the stub must un - marshaling the result
and must pass it to the client object .

 Technically, the JRMI Stub opens socket to the server, “marshaling” the
serializable objects parameters to the server and receive the result from the
JRMI Skeleton .

 JRMI Skeleton has a method that executes the remote calls from the stubs and
it use “un- marshaling” technique in order to extract the parameters of the call
and in order to instruct the JRMI server object to run the invoked method with
the received parameters

St
ubRMI Client RMI Server

skeleton

return

call

1. Java RMI Technology

Developing JRMI System *in readme.txt:

DEVELOPMENT of the RMI SERVER:
1. Defining the remote interface
2. Developing the Java class for instantiation of the JRMI server object –

implementing the interface from the step 1.
3. Developing the Java main server program
4. Compiling the Java server classes source code and generating the JRMI

Skeleton & JRMI Stub classes using rmic utility program
DEVELOPMENT of the RMI CLIENT:
5. Developing the Java client program
6. Copying the Java compiled byte-code files for JRMI Stub and for the

remote interface – from the server side to the client side
7. Compiling the client Java source code file together with the files from step

6.
RUNNING RMI SERVER:
8. Start the JRMI registry program.
9. Start the server program.
RUNNING RMI CLIENT:
10.Start the client program

1. Java RMI Technology

JRMI Development Steps

Step 1: Defining the remote interface

 Remote interface between the client and server objects.

/* SampleServerInterface.java */

import java.rmi.*;

public interface SampleServerInterface extends Remote

{

 public int sum(int a,int b) throws RemoteException;

}

1. Java RMI Technology

JRMI Development Steps

• JRMI server object is “unicast remote server” => inheriting the
class java.rmi.server.UnicastRemoteObject.

• JRMI server object implements the interface from the step 1.

/* SampleServerImpl.java */

import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

public class SampleServerImpl extends UnicastRemoteObject

 implements SampleServerInterface {

 SampleServerImpl() throws RemoteException

 { super(); }

Step 2: Development of the remote object implementing
the remote interface

1. Java RMI Technology

JRMI Development Steps

/* SampleServerImpl.java */

 public int sum(int a,int b) throws RemoteException

 {

 return a + b;

 }

}

Step 2: Development of the remote object implementing the
remote interface

1. Java RMI Technology

JRMI Development Steps

The main JRMI server program, activate the RMISecurityManager in

order to protect its own resources in the network and to expose only

the items specified in the security policies from the java.policy file.

The main server program creates the JRMI server object from the

class created in step 2 and implements the interface from the step 1.

The JRMI server must register the object in JRMI registry utility

program – bind() or rebind().

Step 3: Development of the main server program

1. Java RMI Technology

JRMI Development Steps

Step 3: Development of the main server program

/* SampleServerProgMain.java */

 public static void main(String args[])

 {

 try

 {

 System.setSecurityManager(new RMISecurityManager());

 //set the security manager

 //create a local instance of the JRMI server object

 SampleServerImpl Server = new SampleServerImpl();

 //put the local instance in the registry

 Naming.rebind("rmi://localhost:1099/SAMPLE - SERVER" , Server);

 ...

1. Java RMI Technology

JRMI Development Steps

Step 4: Development of the client program

• The JRMI client program activates the RMISecurityManager in order to
expose to the JRMI server only the parts specified in the java.policy file.

• The client program should obtain the reference to the remote object in
order to invoke a remote method from the server object. The JRMI clients
receive the reference to the remote server object after interrogation of
the JRMI registry application – using the lookup() method from
java.rmi.Naming

• The JRMI server object name is like an URL:
 rmi://server_registry_host:port/server_rmi_name
 rmi://127.0.0.1:1099/SAMPLE -SERVER

• The default port used by the JRMI registry application is 1099.
• The name specified in URL, “server_rmi_name”, must be the same as the

one used by the JRMI server when registered – bind() into JRMI registry
application. For instance, here, the name is “SAMPLE-SERVER”

• The call of the remote object is, from the syntax point of view, the same
as calling a local method but using the a client object with the remote
interface as data type (SampleServerInterface remoteObject).

1. Java RMI Technology

JRMI Development Steps

import java.rmi.*;

import java.rmi.server.*;

public class SampleClient

{

 public static void main(String[] args)

 {

 // set the security manager for the client

 System.setSecurityManager (new RMISecurityManager ());

 //get the remote object from the registry

 try

 {

 System.out.println("Security Manager loaded");

 String url = ñrmi ://localhost:1099/SAMPLE - SERVER";

 SampleServerInterface remoteObject = (SampleServer) Naming.lookup (url) ;

 System.out.println("Got remote object");

 System.out.println(" 1 + 2 = " + remoteObject.sum (1,2));

 }

 catch (RemoteException exc) {

...

Step 5: The client program
development

1. Java RMI Technology

Java RMI Security Policy File

 In Java, an application actions take into account the privileges
required by Java Virtual Machine - JVM - java.exe to the OS-Operating
System. The JVM is instructed by a Java Policy file. Usually is in
$JAVA_HOME/jre/lib/security folder or can be passed as parameter to
the JVM through -Dpolicy .file =é option:

 grant {

 permission java.security.AllPermission ;

 };

 A modified sample for Java Policy file permission:

 grant {

 permission java.io.filePermission ñd:/tmpò, ñreadò, ñwriteò;

 permission java.net.SocketPermission
ñsomehost.somedomain.com:999ò,òconnectò;

 permission java.net.SocketPermission ñ*:1024-
65535ò,òconnect,requestò;

 permission java.net.SocketPermission ñ*:80ò,òconnectò;

 };

1. Java RMI Technology

Java RMI Security Policy File

1. It permits the Java class to read and write files from the
“d:/tmp” folder and subfolders.

2. It permits the Java class to establish network connections

with “somehost.somedomain.com” in the 999 port.

3. It permits the Java class to accept the network

connections from any computer as long as the requests
are coming for the network ports greater than 1024

4. It permits the Java class to establish the network

connections to any computer from the network as long as
the requests are for port 80 from the server side, in
common way for HTTP protocol.

1. Java RMI Technology

Necessary Items for running Java RMI

1. The firewall should be configured both on the server and
on the client side

2. The security policy files fisier java .policy should be
configured both on the server and on the client side

3. The programs run taking into account the security policies
described in the java .policy file and JVM heap resize –

option -Xms1000000000

Fact: DAD core is based on Java RMI

In few samples it is simple to remember: Java RMI
Architecture with JRMP protocol analysis in real time
plus the core actions for distributed computing and
systems:

Picture processing within a RMI Cluster.

Section Conclusion

Java RMI Remote Method Invocation DEMO

DAD Section 4 – Core Middleware Technologies for Distributed Computing / Distributed App Development

Java RMI DEMO – Web Local Processing WITHOUT RMI

2. Advanced Java RMI DEMO

2. Advanced Java RMI DEMO

Java RMI DEMO – Web Local Processing WITH RMI

Section Conclusions

 Java RMI DEMO

 for easy sharing

Java RMI – Remote method Invocation Technology is the
base of Core Distributed Middleware Programming
in JEE

EJB – Enterprise Java Beans may communicate each-

other via Java RMI

Java RMI network protocol – JRMP is not open

Java RMI subs/skeleton are involved in network

communication, objects serialization and
deserialization – marshaling/un-marshaling
procedure

Java RMI is using the “name service” provided by

‘rmiregistry’ application from $JAVA_HOME/bin

Java RMI DEMO for pictures processing – local &

distributed

Communicate & Exchange Ideas
Distributed Application Development

?
Questions & Answers!

But wait…
There’s More!

What’s Your Message?

Thanks!

DAD – Distributed Application Development
End of Lecture 8

